
QUASISTATIONARY HEAT TRANSFER IN A ROTATING REGENERATIVE AIR HEATER 

CONTAINING SPHERICAL PACKING ELEMENTS 

V. M. Komissarov and E. R. Rekhviashvili UDC 536.244:532.546.2 

Results are presented on quasistationary heat transfer in a layer of spheres with 
allowance for the thermal resistance with intersecting orientation of the heat- 
exchanging media in the working chambers of a rotating air heater. 

Regenerative rotating air heaters are widely used at large thermal power stations and 
in gas-turbine systems. They are used in supplying hot air in agricultural processes (dry- 
ers, warm-air heating in greenhouses, animal-rearing buildings, etc.). Recently, nonmetallic 
materials have replaced the sheet-metal fittings in these exchangers: glass and ceramic 
spheres [1, 2]. 

Temperature gradients occur within the spheres during heat transfer between the gas 
and the ceramic spheres at high gas flow speeds. The current methods of calculating heat 
transfer are reasonablyreliable only for regenerative air heaters with gradient-free metal 
filling heating [3]. Not many studies have been performed on these processes when gradients 
are involved, as in equipment filled with ceramic spheres characterized by cross-current or- 
ientation of the heat-exchanging media [4, 5]. 

Here we derive a working formula for the heat-transfer coefficient for the general case 
of quasistationary heat transfer in the working chambers of regenerative air heaters with 
allowance for the internal thermal resistance in the spheres. 

To describe the process, we determined the heating (cooling) law for a sphere of radius 
R in a medium whose temperature varies along the time coordinate T in accordance with 

T~ (~) = Tc ~ - -  (Tr - -  T~o) exp ( - -  k,) ,  (1)  

where Tc~ = Tc(oo ). At the initial instant (T = 0) there is the following temperature differ- 
ence between the medium To0 and the packing To: 

b := Tco--T o. (2)  

To derive the heat-transfer coefficient, we have to find the temperature distribution 
in the sphere at any time T with boundary conditions of the third kind. We assume that the 
problem is symmetrical, i.e., the isothermal surfaces within the sphere are concentric 
spheres. 

The available evidence for rotating regenerative heat exchangers shows that this ap- 
proach describes the actual processes quite accurately, while the formulation of the initial 
conditions is more general than that used in [5, 6]. 

A regenerative rotating air heater contains unflushed (nonworking) regions between the 
working chambers, in which there is adiabatic temperature redistribution over the volume of 
a sphere, so under certain conditions one can write the initial condition as 

T(r, O)= To=const, 0 < r < R .  (3)  

The b o u n d a r y  c o n d i t i o n  and  t h e  c o n d i t i o n  f o r  s y m m e t r y  o f  t h e  t e m p e r a t u r e p a t t e r n  i n  a s p h e r e  
correspondingly take the form 

OT(R, ~) 
Or ~H[Tc~--(Tc~--Tc~ ~)1 = O, (4)  
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Fig. i. Essential scheme for system for examining quasistationary heat transfer: I) ro- 
tating regenerative air heater; 2) combustion chamber; 3) blower; 4) smoke extraction; 5 
and 6) fans; 7) double diaphragm; 8) slide; 9) fuel pump; !0 fuel flowmeter; II) adjust- 
ing screw; 12) electromagnetic valve; 13) igniter. 

OT(O, T) = 0. (5) 
ar 

The following is the solution to the differential equation for thermal conduction in the 
sphere in transformed form: 

To HRZ (To* -- To) + T sh -~  r _ CD(s) 
T(r, s) - - -  - -  - - ~ ' ,  (6) 

s r s ( l + + ) [ ( H R _ l ) s h ] / / + R + R ] / - ~ a  c h i l l - - s -  R *(s) 

where r  and $ ( s )  a r e  r e a d i l y  reduced  to g e n e r a l i z e d  p o l y n o m i a l s  in  s .  

We apply the expansion theorem to write the general solution as the sum of inverse La- 
place transformations for the three roots of the polynomial in the denominator: 

H R ( T c ~ - -  To-- b)sin l / / / ~ T r  
T (r, x) = Tc~- -  . X 

r ( H R - -  1)sin ]1/ R R V / 

r 
R sin Ltt,, - -  

R 

n=l 1 a,u~ kR z rlx~ 
kR z 

The values of A n are given to four figures in [6]. 

If we determine the dimensionless temperatures of the medium as 
then the Predvoditelev criterion is given by 

Pd = k - ~ o / m ~ . = ,  a(Tc0-- To'i- d~ = a(Tco-- To) 

a,u~ ) (7) 
exp Ra x .  

Oc = (To - -  Tco)l(Tco - -  To), 

kR2 0~. 
a (8) 
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Fig. 2. Experimental data on heat transfer in working 
chambers of a rotating air heater having nonmetallic 
heating surfaces in the form of a ceramic sphere layer: 
a) for packing heating chamber; b) for cooling chamber; 
I) Nu/C t = 0.081 Re. 

The solution to (7) is written as follows in dimensionless variables: 

O= T(r, *)--Tco = O .  
Bi R sin V / ~ r 

1-- Oo~ R 
[ . . / ' - P - ~ ,  / Pd Pd'] ::'; 

r (Bi--1)s'nv-b-~-~-r V --o-~-~ c~ 1 / -~-~  

( PdFo ) _ % ' ~ .  ,4~0 2 Rsinp~" Rr~t,~ O~-t- 1-- O~p'2pd exp(--~ Fo). (9) 
• exp 1 pd �9 ce~n 

We put b -- 0 in (7) and determine the dimensionless temperature of the median as O c = (To 
Tco)/(Tc~--Tco), while the Predvoditelev criterion is determined as Pd0----kR2/a, which gives 
Lykov's solution [6]. 

Expression (9) together with the transcendental equation 

tan ~ == ~-------!~t (10) 
1 --Bi 

enables one to determine the heat-transfer coefficient ~ appearing in Bi. 

The initial temperature difference b was determined from the surface temperature of the 
sphere T(R, 0) and the mean integral temperature of the medium in the packing layer. The 
mean integral heat-transfer coefficient may be derived by direct measurement of the tempera- 
tures of the sphere surface and the gas, and one uses (7) written in transformed form, i.e., 
for r =R. 

When we had established the errors on discarding terms other than the first, the method 
of [5, 6] was used to write the transformed equation in dimensionless form with an error of 
less than 0.2%: 

Bi tan Pd 
o , - o = o  1 -  / o~  

(Bi - - l ) tan~ Pd + l /  Pd 

Axsin[~ [ ] 

( pd o)] 
exp O~o + (11) 

exp (-- F~ Fo). 

This equation applies whenever 

(12) 
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A laboratory system at this institute was used in examining the heat transfer in such 
chambers with crossing gas flows. Figure i shows the essential scheme. The model for the 
air heater is a pilot-plant specimen of a Jungstrom rotating apparatus with a rotor diameter 
of 1.4 m. The working chambers were filled with porcelain spheres of diameter 12.8 mm made 
by the Rechitsa porcelain plant, and the layer depth was 0.3 m. The system was fitted with 
a combustion chamber, a set of extraction and blower units, a panel bearing the monitoring 
and measuring instruments, and a control system for the power and signaling devices. 

We determined the following parameters required in estimating the mean heat-transfer 
coefficients by the above method. 

The flow rates of the heating and heated media were measured by means of paired dia- 
phragms; the temperatures were determined with Chromel--Alumel thermocouples, with recording 
with EPP-O. 9 and KSP-4 multipoint electronic potentiometers. The temperatures of the ceramic 
spheres were measured with insulated Chromel--Alumel thermocouples attached to the surfaces 
by means of a special cement used in joining amalgam and silicate objects. To measure the 
gas temperatures in the packing layer, the hot thermocouple junctions were placed in short 
tubes with radial holes. These two types of thermocouple were close together. In this way, 
the temperatures of the gas and sphere surface were measured at three points at three levels. 
The thermo-emf's from the thermocouples rotating together with the rotor were passed to a 
copper-graphite contact device set up at the cold end of the rotor shaft. The secondary in- 
strument was a KSP-4 potentiometer (accuracy class 0.25%). 

The rotor speed was measured with an electrical pulse counter and special contact at- 
tached to the shaft. The surface of the packing in the working chamber was defined by 

Fp = 6(Idp--m) Vp (13) 

The volume occupied by the packing in a sector cell in the rotor was determined by cal- 
culation from the geometrical dimensions. The density of the material was found by a volu- 
metric method. 

The mass flow rate of the packing was given by 

Np ---- 30 n (D1 - -  D~) h b -Ppa ~D, (14) 

To find the numerical value of the exponent and the maximum temperature of the medium, 
the time spent by a packing element in the working chamber was split up into four equal inter- 
vals To. The mean integral temperatures at the boundaries of the intervals were found graph- 
ically. The values were used with (I) to calculate the exponent describing the variation in 
mean integral gas temperature and the maximum value Tc~: 

k = In z~t/%. (15) 

S i m i l a r l y ,  we de t e rmined  the  exponent  d e s c r i b i n g  the  mean i n t e g r a l  t e m p e r a t u r e  o f  a 
packing element. The definitive gas and packing temperatures were taken as the mean inte- 
gral values in the working chambers. The physical constants of the gas medium and packing 
were determined for these temperatures by means of the data given in [i, 3, 7]. The linear 
dimension was taken as the sphere diameter dp, while the characteristic velocity was taken 
as the gas speed in a section free from packing. 

Equations (I0) and (ii) with given values of @g, 8~, Pd, Fo enable one to determine the 
heat-transfer coefficients between the media in the working chambers from the known value of 
the Blot criterion. 

Figure 2 shows the results in terms of the Nusselt and Reynolds numbers. For Reynolds 
numbers between 250 and 1400, the approximation is 

Nu ~ Q081 ReCt. (16) 

The values of C t varied within narrow limits: 0.86-0.95 for the packing heating cham- 
ber and 1.06-1.15 for the cooling chamber. For practical calculations with an error of up 
to 5%, one can take C t = 0.9 for the heating chamber and C t = i.I for the cooling one. 

It should be mentioned that the scope for using the (16) derived from the solution of 
(ii) should be established in each case by means of a calculation designed to check the con- 
dition stated in (3). This condition is met fairly fully if the calculated value of the 
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Fourier number for the unflushed (nonworking) part of the air heater is not less than 0.45- 
0.50. It should be noted that the cross section of each unflushed part in the experimental 
heat exchanger was 20% of the to~al cross section of the exchanger, while the rotor speed 
was 0.3-0.4 rpm and the values of the packing constants [I] were kp = 1.5 W/m-deg, Cp = 
kJ/mg.deg, and 0pc = 2350 kg/m ~. 

The design and working parameters of the prototype were very close to those of commer- 
cial regenerative air heaters. 

Therefore, this solution on the heating and cooling of a single packing element can be 
used for conditions of initial temperature difference with the most general case of exponen- 
tial gas temperature variation to examine the heat-transfer processes under conditions of 
crossing flow for the heat-exchanging media in the presence of a radial temperature gradient 
in the packing element, and one gets the criterion relationship described by (16). 

These relationships have been used in calculating industrial air heaters having nonmetal- 
lic heating surfaces. 

NOTATION 

Nu = ~d_/k, Nusselt number; Re = ~dp/V, Reynolds number; Fo = a~/R =, Fourier number; 
80 = (Tc~--Tc~)/(7~0-- To) dimensionless temperature of the medium for T ~ ~; 8 s = [T(R. ~)-- Tco]/ 

[~0--T(R, 0)] , dimensionless surface temperature; m = i -- (Cp/VDyp)], packing bed voidage; 
C t = Tpa/Tfl , temperature factor for thermal resistance of the boundary layer At = (tc~--tc~)/ 

(t~8--tc~; Pd0= kR~ , Predvoditelev number e, heat-transfer coefficient, kp, ~, thermal conduc- 
tivity of packing and gas, respectively; dp, diameter of a sphere, d D ffi 2R; a, thermal dlf- 
fusivity of the packing material; Bi/R, reduced heat transfer coefficient (Bi/R = H = ~/Xp; 
~, gas flow velocity in the section free of packing; ~, kinematic viscosity; Tc= , maximum 

medium temperature; k, exponent; Tpa , Tfl , mean integral temperatures in the working chamber 
for packing and flow; t~ , t=, ts, mean integral temperatures for sections; To, interval; 
interval; V_, packing volume in chamber; Fp, packing surface participating in heat transfer; 
Gp, packing~weight in the chamber; yp, density of packing; D, DI, D=, mean, maximum, and 
minimum diameters of rotor shell, respectively) hb, 0pa, ~, bed height, packing density, 
and packing mass flow rate, respectively. 
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